

Abstract

Sirtuin-2 (SIRT2) is an NAD⁺-dependent lysine de-acylase that regulates cellular metabolic reprogramming by post-translationally removing marks from histones and many other nuclear and cellular protein targets. A metabolic switch occurs during many physiological processes, including somatic reprogramming, tumorigenesis, and immune cell differentiation, activation, and tolerance. Indeed, intracellular infection by viruses or bacteria, often invokes metabolic reprogramming that the pathogen needs to coordinate nuclear and cellular events with the changing host-cell metabolic status to achieve optimal productive infection. Evrys Bio has developed a portfolio of >1000 SIRT2-selective small molecules that do not compete with NAD⁺ or the (peptide) target of SIRT2 post-translational modification. Instead, these are allosteric modulators that change the relative rate of deacylation mediated by SIRT2 for targets differing in acyl-chain modification and/or peptide sequence. Additionally, even at saturating concentrations, these allosteric modulators never completely shut down SIRT2 enzyme function. As a result, Evrys is developing multiple anti-infective drugs that "fit-to-purpose" SIRT2 modulation and therapeutic window provide (compared to uninfected cells) for (1) opportunistic viruses that threaten immunocompromised patients including actively immunosuppressed transplant recipients, (2) chronic hepatitis B, (3) pan-biothreat RNA viruses, and (4) diverse gram +/- intracellular bacteria. Preclinical data from cellbased and animal models of tolerability and pathogen challenge will be presented including for Evrys' first IND-ready candidate, EV 100. Interestingly, exploratory research indicates that Evrys' SIRT2 portfolio provides bioavailable and well-tolerated SIRT2 modulators as proof-ofconcept for application to non-infectious disease conditions.

Background: Cellular SIRT2 Protein Function

- 1. SIRT2 belongs to the sirtuin family (SIRT1-7) of cellular Class III lysine de-acylase (KDAC) enzymes.
- 2. These require NAD⁺ as a co-factor.

Propionyl Butyryl Acetyl $\mathbb{A}^{\mathbb{A}} \times_{\mathbb{N}} \mathbb{A}^{\mathbb{A}} \times_{\mathbb{N}} \mathbb{A}^{\mathbb{A}}$ Crotonyl 'Succinyl Ö $\sim \sim \sim$ Octanoyl $\sim \sim \sim \sim$ Decanov $\sim \sim \sim \sim \sim$ Dodecanovl ~~~~~ $\times_{\mathbb{N}}$ ×N Lipoyl

- 3. The acyl-chain is transferred to the ADPribose of NAD⁺.
- 4. Nicotinamide and the 2'-O-acyl-ADP-ribose are released...
- 5. ...as is the post-translationally modified de-acylated target protein.
- 6. Numerous cellular targets of SIRT2 de-acylation have been reported. As a result, numerous cellular functions are impacted by SIRT2 including epigenetics, signal transduction, stress response, metabolism, and cellular organization.
- 7. The requirement for NAD⁺ couples SIRT2-mediated regulatory events to the metabolic status of the cell.

Allosteric Modulators of SIRT2 Are Broadly Anti-Infective

Figure 1: Evrys Bio has validated > 1000 allosteric modulators of SIRT2. The co-crystal structure for early lead FLS-359 occupies the extended C pocket of SIRT2 (PDB:7T1D). NAD+ and acetylated peptide overlay show both maintain access to the catalytic domain in the presence of FLS-359. Binding results in inhibition of SIRT2 de-acetylase activity that is independent of NAD⁺ and acetyl-peptide concentration.

Allosteric sirtuin-2 (SIRT2) modulators are pathogen-agnostic anti-infectives that inhibit both viruses and bacteria, and have application beyond infectious disease

Lillian Chiang, PhD, Stacy Remiszewski, PhD, Allison Beare, BS, Kathryn Roche, BS, Olivia Cipollini, MS, Matthew Todd, PhD, John Kulp III, PhD, Caitlin DeAngelo, PhD ¹Evrys Bio LLC, 3805 Old Easton Rd., Doylestown PA 18902

Figure 2: 1. Due to its absolute requirement for co-factor NAD⁺, the enzyme activity of SIRT2 is tied to the metabolic capacity of the cell. 2. Virus infection often imposes a low nutrient condition, activating SIRT2 and pushing the cell into glycolysis to fuel viral replication and cellular immunity. 3. SIRT2 allosteric modulators like FLS-359 partially inhibit SIRT2 deacetylase activity in infected cells and can change the relative preference of SIRT2 for targets. Many de-acylation targets downstream of SIRT2 can influence the course of infection. **4.** α -tubulin is a direct target of SIRT2 deacetylation. SIRT2 modulator AGK2 causes hyperacetylation of perinuclear microtubules, having major consequences for dynamics of intracellular pathogen movement¹⁰. **5.** SIRT2 has been reported to interact with the cGAS-STING pathway by deacetylating G3BP1 and blocking the G3BP1cGAS interaction¹¹. **6.** The AKT signal transduction pathway has been the best studied in the context of SIRT2 modulation during infection. SIRT2 binds to AKT through its PH and catalytic domains to drive its maximal activation. AGK2 prevented AKT hyperphosphorylation at S473 but the basal level of activated AKT S473P was not reduced¹², thus blocking elevated but not basal AKT activity. Multiple viruses have been shown to activate AKT¹³ impacting numerous cell processes, including RNA processing and translation, metabolism, cell proliferation and cell survival. 7. SIRT2 can translocate to the nucleus during infection. Nuclear SIRT2 imposes a host-cell transcriptional program that favors growth of Listeria monocytogenes. AGK2 blocks this program and inhibits growth of the pathogen in cell culture and in mice⁷. SIRT2 nuclear localization and altered host-cell transcriptome has also been reported for *M. tuberculosis*-infected macrophages⁹. **8.** SIRT2 regulates many aspects of metabolism, including enzymes that drive glycolysis, the TCA cycle, oxidative phosphorylation (OxPhos) and lipid synthesis. Multiple viruses also induce aerobic glycolysis and OxPhos¹⁴. The combination of SIRT2 modulation plus viral infection leads to high consumption of glucose resulting in buildup of lactic acid in the **Explo** microenvironment of infected cells that is detrimental to viral replication. 9. Acetylated lysines have been identified in a variety of viruses¹⁵, so SIRT2 modulators also can act directly on the acetylation status of viral proteins.

Table 1: Pan-viral profile of FLS-359 and EV-100.								
Virus/Pathogen	Pathogen Family	FLS-359 μΜ EC ₅₀	EV-100 μΜ EC ₅₀	Comparator µM EC ₅₀	Comparator or Standard of Care (SOC)	Other SIRT2 modulator (literatu		
<u>Herpes viruses</u>								
Cytomegalovirus ¹	herpesvirus (beta)	0.6	1.2	1.4	ganciclovir (SOC)	sirtinol ²		
Epstein-Barr Virus ¹	herpesvirus (gamma)	3.8		43	ganciclovir			
<u>Hepatic viruses</u>								
Hepatitis A	picornavirus	1.8				sirtinol ³		
Hepatitis B ^₄	hepadnavirus	5.2	3.2	0.03	tenofovir (SOC)	AGK2, SIRT2 shRN		
Respiratory viruses								
HCoV-OC43	coronavirus (beta)	0.5	0.4	1.6	hydroxychloroquine			
SARS-CoV2	coronavirus (beta)	0.6	0.4	0.07	remdesivir (SOC)			
MERS	coronavirus (beta)		1.3	0.07	remdesivir (SOC)			
HCoV-229E	coronavirus (alpha)	1.6		0.04	remdesivir			
Influenza A	orthomyxovirus	<u>1.2</u>	<u>0.86</u>	<u>0.3</u>	oseltamivir (SOC)			
Influenza B	orthomyxovirus	<u>1.2</u>	<u>0.86</u>	<u>6.4</u>	oseltamivir (SOC)			
Influenza A ^R	orthomyxovirus	2.5		9	oseltamivir (SOC)			
Ad5	adenovirus	1.6		3.1	cidofovir			
Respiratory Syncytial Virus	orthopneumovirus	6.7	<u>3.7</u>	16.1, <u>9.5</u>	ribavirin, remdesivir			
<u>Biodefense viruses</u>								
Zika	flavivirus	0.4		3.9	amodiaquine	sirtinol, tenovin-1		
Dengue (DENV2)	flavivirus					tenovin-1 ⁷		
Venezuelan Eq. Encephalitis	alphavirus	1.9	1.6	0.78	β-d-N4-hydroxycytidine			
Chikungunya	alphavirus					sirtinol, tenovin-1		
Lassa Fever Virus	arenavirus	1.7	0.83	0.015	ST-193			
West Nile Virus	alphavirus					sirtinol, tenovin-1		
Rift Valley Virus	bunyavirus					sirtinol, tenovin-1		
La Crosse Virus	bunyavirus					sirtinol, tenovin-1		
Ebola (Sudan)	filovirus	2.4	1.9	0.04	remdesivir			
Other intracellular pathogens								
Salmonella Typhimurium	gram(-) bacteria					SIRT2 KO, AK7 ⁷		
Listeria monocytogenes	gram(+) bacteria					AGK2, SIRT2 siRN		
Mycobacterium tuberculosis	mycobacteria					AGK2 ⁸		
AVERAGE ANTIVIRAL EC ₅₀		< 2.1	< 1.5	< 5.6				
MEDIAN ANTIVIRAL EC ₅₀		2.2	1.8	2.3				

EV-100 is a game changer for cytomegalovirus prophylaxis

nechanism	Pan-Viral Profile	EC ₅₀ (μΜ)	MAX INH at EC ₉₉	Viral Genes conferring resistance	Length of U.S. exclusivity from Orange Book
human SIRT2 inh	CMV, EBV, respiratory & hepatic viruses	0.7	>100-fold	None	1 st issued patent expiry in 2038
ed drugs:					
ciclovir: <i>nucleoside</i>	CMV, HSV	2.6	28-fold	UL54 UL97	generic
vir: viral protein inh	CMV, EBV	0.25	24-fold	UL97	Takeda 2026
ovir: <i>viral terminase</i>	CMV	0.003	4-fold	UL56 terminal resistance	Merck 2024 (oral) 2033 (injectable)
ir: <i>viral DNA pol inh</i> ited)	CMV, HSV	0.64	>100-fold	UL54	generic
et: <i>pyrophosphate</i> nited)	CMV, HSV	200	n.d.	UL54	generic

Table 2. EV-100 is an allosteric inhibitor of human SIRT2 protein. Compared
 to marketed drugs, EV-100 is broadly active against multiple opportunistic viruses; it is equivalent or more potent compared to most in antiviral EC_{50} ; it exhibits tighter virologic control at maximum inhibitory concentrations; and viral gene mutations are not expected to confer drug-resistance. In September 2024, Evrys completed an FDA Type B pre-IND meeting providing alignment on GLP-tox species (rat and mini-pig), CMC (with 3 kg pilot batch ready for GLP-tox studies), virology plan, and first-in-man trial design for clinical phase 1 single ascending/multiple ascending dose trial.

SIRT2 modulation to functionally cure chronic hepatitis B

Figure 3. HBV E antigen (A), S antigen (B), and cccDNA (C) were assayed in HBV infected C3A-NTCP or in HepG2.2.15 cells. FLS-359 reduced both E and S antigen, $EC_{50} = 0.7$ and 1.5 μ M, respectively. FLS-359 inhibited cccDNA by 45-fold. Leads improved from FLS-359 also inhibit cccDNA up to 128-fold, the limit of detection, for Cpd 14.

oring	use of SIRT2 modulators for n	on-	infectious	indications	
			Disease	SIRT2 Interactome Disease Overlap (%)	
			Anemia	96% (24/25)	
			Melanoma	94% (45/48)	
-			HIV infection	91% (29/32)	
-			B cell lymphoma	86% (49/57)	
			Myocardial ischemia	81% (132/163)	
			AML	79% (137/174)	
	Disease		Breast cancer	78% (110/142)	
	related ge	nes	Gastric cancer	74% (224/302)	
Γ2 2° inte	eractome genes		Lung cancer	70% (389/556)	
			p < 0.001 FDR ad	justed PrimeKG overlap	
Ker T2	SIRT2 is upregulated in tumor cells. Cyclin E/CDK2 can phosphorylate SIRT2 at S331, attenuating its activity	Zha J.C	ao 2014 J.Clin.Invest.; Cell.Biol.	YS VAIICATION Pandithage 2008	
lyc	SIRT2 modulation induces c-Myc degradation in ER ⁺ MCF7 and triple-negative MB-231	Jin Evi xer	Jing 2016 <i>Cancer Cell</i> Liu 2013 <i>Cell Death Differ.</i> Evrys SIRT2 modulators confirm in cells and xenografts		
RB	Myc induces CDK4/6i resistance by promoting pRB degradation	Kin	Kim 2023 Cell Death Differ.; Ma 2024 Nat.Commun.		
ora se A	Aurora kinase A interacts with c-Myc; SIRT2 modulation reduces Aurora A levels in MB-231 cells	Da Evi line	Dauch 2016 <i>Nat.Med.</i> ; Liu 2013 <i>Cell Death Differ.</i> Evrys SIRT2 modulators confirm in multiple cell lines		
l-1	FLS-359 blocks induction of McI-1 by virus infection in primary human monocytes		Cheung 2024 <i>Antiviral Res.</i> Evrys SIRT2 modulators confirm in cells and xenografts		
<t< td=""><td>PI3K pathway is commonly activated in breast cancer</td><td>Vas Evi xer</td><td colspan="3">Vasan 2019 <i>Annals Oncology</i> Evrys SIRT2 modulators confirm in cells and xenografts</td></t<>	PI3K pathway is commonly activated in breast cancer	Vas Evi xer	Vasan 2019 <i>Annals Oncology</i> Evrys SIRT2 modulators confirm in cells and xenografts		
ng	SLUG induces tumor cell migration and contributes to malignancy multiple cancers, including SUM149 breast cancer cell; SIRT2 stabilize SLUG	n Zho Evi miç	Zhou 2016 <i>Cell Rep.</i> Evrys SIRT2 modulators reduce tumor cell migration		
Cycle tus	SIRT2 modulator induces cell cycle arrest, MCF-7 and triple-negative MB-468 cells	e Wa	Wawruszak 2022 <i>Cells</i>		
tosis	FLS-359 induces apoptosis in primary human monocytes; SIRT2 modulation activates caspase 3 in multiple breast cancer cell lines	Ch Wa	Cheung 2024 <i>Antiviral Res.</i> Wawruszak 2022 <i>Cells</i>		

S 0.5

____MCM2 ____MCM3 ____MCM4 ____MCM5 ____vehicle

Figure 5: SIRT2 modulation prevents Chikungunya Virus dissemination to the brain. Eight-week-old C57BL6 mice were infected with 1000 pfu Chikungunya virus (CHIKV) by foot pad injection. SIRT2 modulating drugs (MCM1-4) or vehicle (0.5% methylcellulose/0.5% Tween 80/water) (n=8 per group with legend at far right) were administered daily 100 mg/kg po starting 1 h after CHIKV challenge. A. 2 dpi-viremia was measured for serum by limiting dilution plaque assays on Vero cells. Drug treatment did not differ significantly from vehicle. **B.** 7 dpi tissues were collected at necropsy, homogenized in 500 μ I PBS, and clarified by centrifugation. 20 μ I of homogenate was titered by limiting dilution plaque assays on Vero cells. C. RNA was extracted from 300 μ I of homogenate and viral genomes were detected by qRT-PCR. Two to five log less CHIKV was detected in the brain by both plaque assay and RNA genome detection. (*p=0.05, **p=0.02, ***p=0.001, ****p=0.0001).

Acute Lung CFU/mouse Figure 6: SIRT2 modulation reduces *Mycobacterium tuberculosis (M.tb)* acterial load in infected mice. emale BALB/c mice were challenged ith 100-200 CFU M.tb (Erdman train) by aerosol challenge. Infection 2000000 roceeded with CFU check at d 10 ost-infection to ascertain bacterial ad. Vehicle or FLS-359 (50 mg/kg/d) as then given orally d 11-30 postfection. Shown is CFU/mouse. **p < 001 by 1-way ANOVA. Note that LS-359 does not inhibit free growing *A.tb* (MIC₉₀ > 100 μ M).

Figure 4: SIRT2 modulation protects mice against Ebola Sudan **challenge.** IFN- $\alpha/\beta R_{-}/-$ mice were injected i.p. with Ebola Sudan (SUDV; 1,000 pfu). Four SIRT2 modulators, structurally related to FLS-359, were administered at 100 mg/kg p.o. q.d. (n=10 per drug arm) starting 1 h post-SUDV challenge. The data is combined in one Kaplan-Meier graph and significance determined by one-tailed log-rank test. 0/19 infected mice, vehicle treated survived. 3/10, 3/10, 4/10, and 1/10 survived when treated with MCM2 (p=0.03), MCM3, MCM4 (p=0.01), and MCM5, respectively. B. Among survivors, MCM1-treated mice showed statistically significant improved weight gained (*p=0.02).

animal research was conducted under an Institutional Animal Care and Use Committee (IACUC) approved protocol in compliance with the Animal Welfare Act, Public Ith Service Policy on Humane Care and Use of Laboratory Animals, and other federal statutes and regulations relating to animals and experiments involving animals. facility where this research was conducted is accredited by the AAALAC International and adheres to the principles stated in The Guide for the Care and Use of oratory Animals, National Research Council, 2011

References cited

toche (2023) "An allosteric inhibitor of sirtuin 2 deacetylase activity exhibits broad-spectrum antiviral activity," J Clin Invest doi:10.1172/JCI158978 cheung (2023) "Inhibition of SIRT2 promotes death of human cytomegalovirus-infected peripheral blood monocytes via apoptosis and necroptosis." Antiviral Res oi:10.1016/j.antiviral.2023.105698. (anda (2015) "The sirtuin inhibitor sirtinol inhibits hepatitis A virus (HAV) replication by inhibiting HAV internal ribosomal entry site activity," Biochem Biophys Res Commur oi:10.1016/i.bbrc.2015.09.083. ang (2024) "An allosteric inhibitor of sirtuin 2 blocks hepatitis B virus covalently closed circular DNA establishment and its transcriptional activity," Antiviral Res oi:10.1016/i.antiviral.2024.105888

'iracha (2018) "Sirtuin 2 isoform 1 enhances hepatitis B virus RNA transcription and DNA synthesis through the AKT-GSK-3B/B-catenin signaling pathway," J Virol oi:10.1128/JVI.00955-18 lackett (2019) "Sirtuin inhibitors are broadly antiviral against arboviruses," *mBio* doi:10.1128/mBio.01446-19 an (2021) "Tenovin-1 inhibited dengue virus replication through SIRT2" *Eur J Pharmacol* doi:10.1016/j.ejphar.2021.174264/

aig (2013) "A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection," Science doi:10.1126/science.1238858 ogoi (2018) "Salmonella escapes adaptive immune response via SIRT2 mediated modulation of innate immune response in dendritic cells," PLoS Pathog oi:10.1371/iournal.ppat.1007437 haskar (2023) "SIRT2 inhibition by AGK2 enhances mycobacteria-specific stem cell memory responses by modulating beta-catenin and glycolysis," iScience

oi:10.1016/j.isci.2023.106644 Silva (2023) "Microtubules and Viral Infection" In Advances in Virus Research; ISBN 9780443193569

023) "SIRT2 negatively regulates the cGAS-STING pathway by deacetylating G3BP1," EMBO Rep doi:10.15252/embr.202357500 amakrishnan (2014) "Sirt2 Deacetylase Is a Novel AKT Binding Partner Critical for AKT Activation by Insulin" J. Biol. Chem. 289, 6054–6066

anco (2020) "Phosphatidylinositol-3-Kinase-Akt Pathway in Negative-Stranded RNA Virus Infection: A Minireview" Arch. Virol. 202 rdhar (2021) "Viruses and Metabolism: The Effects of Viral Infections and Viral Insulins on Host Metabolism" Annu. Rev. Virol. 2021, 8, 373–391

ue, M (2022) "Protein Acetylation Going Viral: Implications in Antiviral Immunity and Viral Infection" Int. J. Mol. Sci. 23, 11308