

The Allosteric Sirtuin 2 Modulator FLS-359 Inhibits Viral Replication

Stacy Remiszewski, Ph.D. Invited Speaker Denver ACS Meeting August 19, 2024 Session: Approaches to the Modulation of Enzyme Activation and/or Substrate Recognition

Agenda

- ð Introduction & identification of sirtuins (SIRTs) as viral restriction factors
- ð SIRT2 Enzyme mechanism and overview of SIRT2 structure
- ð FLS-359 broad spectrum antiviral activity and SIRT2-mediated cellular effects
- ð Mechanism of FLS-359 SIRT2 enzyme activity modulation
- ð Comparison structures of FLS-359 & literature SIRT2 modulators
- ð S ummary

Human cytomegalovirus (HCMV)

ðb-herpesvirus: 200 ORFs and 28 miRNAs

ð Ubiquitous: 1% of newborns; 10% 6-month-olds; 60-99% of adults

ð Infection in healthy individuals generally asymptomatic

ð Acute phase (weeks) - many cell types & organs

ð Persistent phase (years) - salivary, mammary & kidney epithelial cells

ð Latent phase (lifetime) - CD34⁺ bone marrow cells

ð Congenital infection: hearing loss, profound CNS damage

ð Infection can present in immunosuppressed: AIDS & transplant

ð Provides an opportunity to develop a therapy for an unmet medical need

ð Standards of care [–] direct acting antivirals: ganciclovir, letermovir, maribavir

ð DNA polymerase (pUL54) inhibitor, terminase (pUL56) inhibitor and kinase (pUL97) inhibitor

Direct acting antivirals (DAAs) suffer from therapeutic shortcomings

ðTargeting specific a viral protein can lead to drug-resistance
ðOne drug generally specific for one virus
ðNovel emergent viruses will likely not be affected by marketed DAAs

ðHost targeted antivirals can likely address these issues

Sirtuins (SIRTs) ID d as affecting HCMV growth & SIRT2 modulator ID d inhibiting HCMV growth

Tom Shenk lab Princeton:

- ð HCMV virus infection reprograms host-cell metabolism
- ð Genetic screen identified SIRT1-7 as viral restriction factors
- ð A 13 K small molecule screen ID d 85 S IRT modulators; 61/85 cpds active vs. HC MV in secondary screen

Host Target: Human Sirtuin 2 Protein

- ð Sirtuins (SIRTs) are NAD⁺-dependent Class 3 lysine de-acylases (KDACs) that regulate transcription, genome stability, cellular signaling, and energy metabolism in response to the metabolic status of the cell
- ð Sirtuin family of 7 proteins vary in sub-cellular location and function to remove a large variety of protein acyl-lysine modifications
- ð Viral infection disrupts the metabolic status of the cell and depends on sirtuin regulated functions to replicate productively
- ð SIRT2 modulators (nicotinamide, sirtinol, cambinol, AGK2) can engage cellular reprogramming to inhibit cytomegalovirus^{1,2}, hepatitis A virus³, hepatitis B virus^{4,5}, Listeria^{6,7}, S almonella⁸, Tuberculosis⁹
- ð SIRT2 KO mouse is healthy and less susceptible to infection¹⁰
- ð Evrys SIRT2 targeted drugs are allosteric enzyme activity modulators

^{1,2}Mao 2016, Koyuncu 2014, ³Kanda 2015, ^{4,5}Piracha 2018, Yu 2018, ^{6,7}Eskandarian 2013, Pereira 2018, ⁸Gogoi 2018, ⁹Bhaskar 2020, ¹⁰Ciarlo 2017

SIRT1, 2 & 3 are closely related and deacylate various lysine acyl groups

GInThrAlaArg-Lys(Acyl)- SerThrGlyGly

SIRT2 enzyme reaction is complex with multiple substrates, products, transition states, and rate constants

Hit to Lead

ð A 13 K small molecule screen at Princeton ID d FH003 as an antiviral SIRT2 modulator

FLS-359: Host targeted SIRT2 modulator results in broad-spectrum antiviral efficacy in vitro

Virus/ Host Cell	Virus Family	FLS-359 IC ₅₀ (I M)	Host Cell CC ₅₀ (I M)	¹ S I C C ₅₀ /IC ₅₀	² S OC /C IC ₅₀ (I M)	SOC/ Comparator (C)
³ SARS-CoV-2/Human Calu3	∮-C oronavirus	0.3	15.8	52.7	0.4	Remdesivir (C)
³ Zika/Human HFF	Flavivirus	0.4	41.6	104.0	2.8	Amodiaquine (C)
⁴ HCMV/Human MRC5	∮-Herpes virus	0.5	>15.8	>40	2.7	Ganciclovir (SOC)
⁵ Influenza A/Human dNHBE	Orthomyxovirus	⁷ 1.2	>100	>83.3	⁷ 0.7	Ribavirin (C)
⁴ HCoV-OC43/MRC5	∮-C oronavirus	1.7	>50	>30.1	0.1	Remdesivir (C)
³ J unin/Human HFF	Arenavirus	3.2	>25	>7.8	0.2	RIID E-1 (C)
⁶ Hepatitis B/Human PHH	Hepadnavirus	4.8	>10	>2.1	0.03	Tenofovir (SOC)
Epstein-Barr/Human Akata	g-Herpesvirus	3.8	>100	>26.3	43	Ganciclovir (C)
RSV/Human MRC5	Orthopneumovirus	6.7	>12.5	>1.9	16.1	Ribavirin (SOC)

Results are shown for representative assays. ${}^{1}SI =$ selectivity index, ${}^{2}SOC =$ standard of care or C = comparator compound, ${}^{3}HFF =$ human foreskin fibroblasts, ${}^{5}dNHBE =$ differentiated normal human bronchial epithelial cells, PHH = primary human hepatocytes, ${}^{7}IC_{90}$. WIXDF Y[rect al. W 1/11111/1/1/2017

Denver ACS Meeting, August 19, 2024

11

FLS-359 affects known cellular targets of SIRT2

Evrys FLS-359 SIRT2 modulator is not a classic competitive inhibitor

ð S IRT2 Acetyl-peptide hydrolysis rate is reduced
 ð E ffect not altered when raising [NAD]
 ð E ffect marginally altered raising [Ac-peptide]
 ð C pds not fully competitive with substrates

 $\tilde{o}\,S\,IRT2$ activity is not reduced to 0

ð Compounds are SIRT2 modulators

 $\delta\,\text{Evrys}$ compounds are selective for $S\,\text{IRT2}$

Drug	S IR T 1 de-A c etyl E C ₅₀	S IR T 2 de-A c etyl E C ₅₀	S IR T 3 de-A c etyl E C ₅₀		
FLS-359	>100 I M	3 ı M	>100 I M		
WI和FY[Inet al. W 地口口行命計的 13 Denver ACS Meeting, August 19, 2					

FLS-359 is a selective peptide substrate modulator

SIRT2 can accommodate FLS-359, NAD⁺, and Acetyl- but not myristoylated-substrate

FLS-359 docked to SIRT2 with acetylated lysine PDB 4RMH. Binding of FLS-359 (magenta sticks) does not prevent binding of acetyl lysine substrate (green sticks) or NAD⁺ (purple sticks, from PDB 4RMG). Left panel: SIRT2 with surface. Center panel: SIRT2 with ribbon structure only. wixpr Y[wet al. W %IILII) Myristoylated peptide (green sticks, PDB 4Y6O) competes for binding with FLS-359 (magenta sticks) preventing compound binding to SIRT2.

15

Roche KL, et al. J Clin Invest. 2023

Denver ACS Meeting, August 19, 2024

peptide 4Y6O (cyan).

 (\rightarrow)

S

bio

EC site is induced by FLS-359 binding to SIRT2

ð Start: Apo-SIRT2 ⁻X-ray; End: FLS-359-bound SIRT2 X-ray, conformation change

Published SIRT2 modulators reduce HCMV yield in vitro

	Compound	HCMV IC ₅₀ (1 M)	MRC-5 CC ₅₀ (I M)	S I: C C ₅₀ /IC ₅₀	S IR T2 Deacetyl IC ₅₀ (1 M)		
	FLS-359	0.5	>15.8	>40	3.0		
	AGK2	3.4	>100	>29.4	3.5		
	AK-7	8.2	>25	>3	15.5		
	MIND4	14.4	19.8	1.4	3.5		
	S irR eal2	14.9	>20	>1.3	0.2		
	ТМ	26.0	46.3	1.8	0.03		
FLS-	359	AGK2	AK7 N	IND4	SirReal2	ТМ	
NIXD7 Y	» «المعاد W 1/6000						
18			nverACS Meeting, August 1	9, 2024	ev C U S bio		

S mall molecule S IR T 2 modulators have different S IR T binding conformations

S mall molecule S IR T 2 modulators have different S IR T binding conformations

Summary

- ð An unbiased siR NA genetic screen in HC MV infected fibroblasts identified the enzyme class S irtuins as viral restriction factors
- ð A small molecule SIRT enzyme screen found 85 SIRT modulators with 65 having anti-HCMV activity
- ð SIRT2 modulation affects multiple human pathogens
- ð SIRT2 can deacylate lysines with chain lengths ranging from C2 acetyl to C14 myristoyl
- ð The mechanism of SIRT2-mediated deacylation is multistep

Summary

- ð A variety of SIRT2 modulators affect HCMV replication
- ð Evrys lead optimization resulted in FLS-359, which allosterically modulates SIRT2
- ð Host-targeted FLS-359 has broad-spectrum antiviral activity
- ð The EC pocket is absent in apo-SIRT2 and is induced by substrate and small molecule binding
- ð The EC pocket is flexible and can accommodate a variety of small molecule binders that adopt very different conformations in their interactions with SIRT2

Acknowledgemets

Evrys Bio ð Lillian Chiang ð Kate Roche Sullivan ð Eain Murphy ð Matthew Todd ð J ohn Kulp ð Alison Welsh Beare ð Liudi Tang ð Samuel Bernhard

Princeton ð Tom Shenk ð Emre Koyuncu ð Josh Rabinowitz ð Ileana Cristea ð Tom S ilhavy ð David MacMillan NIH Support: ð1R44AI122488-01, 02 & -03 ð2R44AI114079-02

Funding

Ben Franklin Technology PArtners

BIODURO

National Institutes of Health

